A system of counteracting feedback loops regulates Cdc42p activity during spontaneous cell polarization.
نویسندگان
چکیده
Cellular polarization is often a response to distinct extracellular or intracellular cues, such as nutrient gradients or cortical landmarks. However, in the absence of such cues, some cells can still select a polarization axis at random. Positive feedback loops promoting localized activation of the GTPase Cdc42p are central to this process in budding yeast. Here, we explore spontaneous polarization during bud site selection in mutant yeast cells that lack functional landmarks. We find that these cells do not select a single random polarization axis, but continuously change this axis during the G1 phase of the cell cycle. This is reflected in traveling waves of activated Cdc42p which randomly explore the cell periphery. Our integrated computational and in vivo analyses of these waves reveal a negative feedback loop that competes with the aforementioned positive feedback loops to regulate Cdc42p activity and confer dynamic responsiveness on the robust initiation of cell polarization.
منابع مشابه
Symmetry-Breaking Polarization Driven by a Cdc42p GEF-PAK Complex
BACKGROUND In 1952, Alan Turing suggested that spatial patterns could arise from homogeneous starting conditions by feedback amplification of stochastic fluctuations. One example of such self-organization, called symmetry breaking, involves spontaneous cell polarization in the absence of spatial cues. The conserved GTPase Cdc42p is essential for both guided and spontaneous polarization, and in ...
متن کاملMechanistic mathematical model of polarity in yeast
The establishment of cell polarity involves positive-feedback mechanisms that concentrate polarity regulators, including the conserved GTPase Cdc42p, at the "front" of the polarized cell. Previous studies in yeast suggested the presence of two parallel positive-feedback loops, one operating as a diffusion-based system, and the other involving actin-directed trafficking of Cdc42p on vesicles. F-...
متن کاملOpposing Roles for Actin in Cdc42p Polarization□D
In animal and fungal cells, the monomeric GTPase Cdc42p is a key regulator of cell polarity that itself exhibits a polarized distribution in asymmetric cells. Previous work showed that in budding yeast, Cdc42p polarization is unaffected by depolymerization of the actin cytoskeleton (Ayscough et al., J. Cell Biol. 137, 399–416, 1997). Surprisingly, we now report that unlike complete actin depoly...
متن کاملAssembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p, and the effector Cla4p required for cell cycle-regulated phosphorylation of Cdc24p.
In budding yeast cells, the cytoskeletal polarization and depolarization events that shape the bud are triggered at specific times during the cell cycle by the cyclin-dependent kinase Cdc28p. Polarity establishment also requires the small GTPase Cdc42p and its exchange factor, Cdc24p, but the mechanism whereby Cdc28p induces Cdc42p-dependent polarization is unknown. Here we show that Cdc24p bec...
متن کاملExo-endocytic trafficking and the septin-based diffusion barrier are required for the maintenance of Cdc42p polarization during budding yeast asymmetric growth
Cdc42p plays a central role in asymmetric cell growth in yeast by controlling actin organization and vesicular trafficking. However, how Cdc42p is maintained specifically at the daughter cell plasma membrane during asymmetric cell growth is unclear. We have analyzed Cdc42p localization in yeast mutants defective in various stages of membrane trafficking by fluorescence microscopy and biochemica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental cell
دوره 9 4 شماره
صفحات -
تاریخ انتشار 2005